
Linux Security

andrewg@felinemenace.org



Introduction & Topics Covered

●About me

●Hardware security
● Linux kernel security 
●User-land security
●Source code instrumentation
● Logic bugs

● Prior knowledge



Hardware Security    

●Non-executable memory
○ Variety of implementations and implementation goals
○ Prevent code execution on certain ranges

■Stack memory
■ Per-page 

○ Processor support
■ Code Segment (CS)
■ Physical Address Extension (PAE)

●  Supervisor Mode Execution Protection
○ Prevents kernel executing user code
○ PaX uderef



Attacking Non-executable memory

●Heap
○ Place suitable shellcode instructions in the heap

●  C Library
○ Return to a function address (such as system)

●  ET_EXEC symbol / function
●Static VDSO
● Return orientated programming



Return Orientated Programming

●Small snippets of instructions followed by a return 
instruction

● Chain instructions to execute arbitrary code
●Stack looks like multi-function ret2libc
● Preventative measures?

○Unaligned pages
○ Randomized executables / libraries
○ Binary instrumentation / Processor support



Address Space Layout Randomisation

● Instead of having code / data in predictable locations, 
change them
○Stack
○Heap
○ Library addresses
○ Binary position

●ASLR implementations and goals
●Makes attacks less deterministic
●Single attempts vs bruteforce
●Memory leaks
●ASCII armour



Position Independent Executables

●Traditionally, binary positions have been fixed (at 
0x08048000 for Linux/x86)

● Position Independent Executables (ET_DYN) allows the 
executable code to be mapped anywhere

● ret2libc attacks more difficult 



Ubuntu 11.04 PIE Layout



ASLR & Heap exploits

●Heap implementations & advancements
○ https://github.com/andrewg-felinemenace/Linux-OpenBSD-malloc

●Separation of heap control information and program data
●Heap reset, sprays and massages
●Application specific structures more often better



Future of ASLR

● Randomized kernel functions / data locations / images
● Programs to re-execute themselves to maximize ASLR

○ Postfix has always done this
○OpenSSH had this feature implemented



Source Code Fortification

● -DFORTIFY_SOURCE
● __builtin_object_size()
● Instrument C function usage
● Inserts checks if possible

○ __strcpy_chk / __read_chk
○ __strcpy_chk / __printf_chk
○ etc



Source Code Fortification Example



Stack Smashing Protection

●What is Stack Smashing Protection (SSP)
●What does it do?

○  Canary / Cookie
○  Function stack rewriting
○  Argument shadowing



Stack Smashing Protection - Example



SSP - Stack Layout With no SSP
Type Name Contents

Pointer string2 String Pointer

Pointer string1 String Pointer

Value Saved EIP EIP on return

Value Saved EBP EBP on return

Pointer string3 String Pointer

Buffer buf 1024 byte array



SSP - Stack Layout With SSP
Type Name Contents

Value Saved EIP EIP on return

Value Saved EBP EBP on return

Value SSP Cookie Stack Cookie 
Value

Buffer buf 1024 byte array

Pointer string3 String Pointer

Pointer string2 String Pointer

Pointer string1 String Pointer



SSP - Stack Layout Summary

●Stack layout more resistant to attack
○ Function arguments moved
○ Buffers moved to before cookie
○Overwrite of cookie terminates program

● Cookie implementations - terminator, random, mixed, and 
Ubuntu cookie :)



SSP - Weaknesses

● Implementation problems
○Once upon a time, static binaries had a cookie of 0 on 

some distributions
●Stack information leaks
● Cookie does not change if fork()'d 

○Allows bruteforce of entire cookie
○ and also an optimization of byte by byte



NX / ASLR / SSP Exploited

●SSP rewrites the stack arguments, and adds a cookie 
before saved EIP.

●ASLR makes exploitation more complicated by making 
attacks less deterministic

●Non executable memory aims to make attacks more 
difficult by preventing code from being injected into the 
process

● Let’s have a look at how this works in practice against 
an ideal target



● 256 byte input
● 64 byte buffer in 

decrypt



NX / ASLR / SSP Example Exploit

●Needs to determine cookie value
●Needs to determine EIP (and potentially ESP)
● Byte by byte overwrite where possible makes a 

significant improvement
○ 4 bytes = 256 + 256 + 256 + 256 (repeat for 

ESP/EIP where applicable)
■ 1024 attempts maximum per 4 bytes

○Much better than 2 ^ 32-1 (~4 billion) (x 2 or 3)
● 12 least significant bits optimization

○ Knowledge about target OS
●ASLR 





NX / ASLR / SSP Result

$ time ruby1.9.1 exp2.rb 
cookie is 78147800
esp is bfe93f08, eip is b7764ae3
Completed in 1715 tries.

real    0m2.378s
user    0m0.444s
sys     0m0.404s

Pretty quick.



NX / ASLR / SSP - Non-ideal cases

● Complex functions
● Further code / data analysis

○ Post Memory Corruption Memory Analyzer talk
● Function pointers 



Other compiler enhancements

● Bind now linking
● Read only relocations

○ Reduces writable memory locations
○May make attacks harder

●  Want to check how your binaries have been compiled?
○ scanelf from pax-utils
○ chksec shell script



Source Code Instrumentation

● Features of instrumentation
○Detect use after free or return / out of bounds 

access to heap, stack, and global data, dangling 
pointers

● Bounds checking GCC
● LLVM projects

○memsafety
○ address sanitizer

● Build everything with instrumentation
○ Fuzz ALL the things
○ Reduce chances of ALL the exploitation



Runtime Instrumentation

●minemu -- http://minemu.org
● "Just In Time" execution of programs
● Instruments memory access

○ taints memory writes from the network / 
environment

○ propagates tainting to other memory written from 
tainted values

○ prevents tainted memory from being executed or 
used for direct program control (EIP)

● Variety of weaknesses
○ For starters, disables randomization 



Minemu weaknesses

Doesn't protect against 
arbitrary writes from 
tainted values



Minemu weaknesses

Code execution possible



Minemu weaknesses

●Taint propagation failures

●Hard to propagate tainting on array lookups
● Can be used to clean tainting from inputs and use them 

later on (such as a new stack layout for code execution)
● toupper / tolower is common in network services



Application Privilege Dropping

● "Drop it like it's hot"
●  Each thread has it's own user id / group ids / capability 

information
●Threads can share virtual memory, file descriptors, 

amongst other things, clone()



Application Privilege Dropping - qemu



Thread privileges

●Groups fixed, all good?
● qemu creates threads first, then drops privileges
●man page vs kernel documentation
● glibc vs other libcs

● https://gist.github.com/1084042



Kernel Security

● or lack thereof.. min mmap addr, /dev/k?mem, read only .
text

●SELinux / SMACK / TOMOYO / Apparmor



Kernel Security - SELinux

● Reference policies
●Strictness vs usability
● Reactive responses
●Not very user, developer, or sysadmin friendly



Selinux Apache Example

29 lines out of a total of 111 + 1218 + 901 lines 



Kernel Security - AppArmor
● Very small amount of policies
● Path based
● Vaguely similiar to grsecurity config



Kernel Security - OpenWall Patch

●One of the earliest patches available
●Non-executable stack
●Other hardening approaches
● Kernel source code auditing



Kernel Security - PaX Patch 
Influence
● PaX has had a huge influence on modern security in OS

○ASLR in OpenBSD / Windows / Linux / MacOSX / 
NetBSD, etc

○ Position Independent Executables
○ RELRO / Secure PLT / etc
○mprotect restrictions -> SELinux execmod, NetBSD
○NX Memory in Linux / Windows / OpenBSD / etc
○Userland execution preventation -> min_mmap_addr 

●And most likely will continue to do so in the future



Kernel Security - PaX Patch

●Non executable memory
● Reduces code injection avenues
● �Kernel correctness

○ Correct access to userland / kernel memory / API
● Kernel sanitation
●Memory randomization

○ code / data / kernel stack
●GCC plugins to instrument kernel compile 



Kernel Source Code Instrumentation
● PaX GCC plugins

○ Constify plugin
■Marks structures as const by default

○Stack leak detection
■Sanitize kernel stack 

○ kallocstat plugin
■Tracks k*alloc* sizes

○ KernExec plugin
■ x64 implementation of KernExec
■Differences between x86 and x64

○ Checker plugin 
■Source code checking
■Address space separation



Kernel Security - grsecurity patch

●Optional Role-Based Mandatory Access Control Lists
○ Path based
○ Capability restrictions
○Network restrictions

● Implements additional improvements and restrictions
●Miscellaneous other hardening techniques
● Information disclosure prevention
● Extensive auditing options
● Information disclosure prevention



grsecurity ACL example



Who needs memory corruption bugs?

● Yubico PAM Module
○ Fix big security hole: Authentication succeeded when no 

password was given, unless use_first_pass was being used. This is 
fatal if pam_yubico is considered 'sufficient' in the 
PAM configuration.

● Cyrus IMAP NNTP
○ The vulnerability is caused by an error in the 

authentication mechanism of the NNTP server. This can be 
exploited to bypass the authentication process and execute 
commands intended for authenticated users only by sending an 
"AUTHINFO USER" command  without a following "AUTHINFO 
PASS" command.

●And lots of other vulnerabilities that don't require 
memory corruption 



Questions?
If you'd like to learn more about memory corruption 
bugs, exploit development, program debugging etc, 

please check out:

http://exploit-exercises.com


